Oblicz kolegę trzech punktów |
W geometrii współrzędnych trzy punkty mogłyby zrobić trójkąt, jeśli obszar trójkąta wynosi zero, oznacza to, że trzy punkty są kollinialne, w przeciwnym razie punkty nie są collinear.
Na przykład punkt A (X1, Y1) = (1, 2), pkt B (X2, Y2) = (3, 5), pkt C (x3, Y3) = (4, 7).
Obszar = 1/2 {(x1 y2 + x2 y3 + x3 y1) - (x2 y1 + x3 y2 + x1 y3)}
= 1/2 {(5 + 21 + 8) - (6 + 20 + 7)}
= 1/2 (34 - 33)
= 1/2 (1)
= 0,5.
Obszar! = 0; Podane punkty nie są collinear.
wybór języka:日本語 | 한국어 | Français | Español | ไทย| عربي | русский язык | Português | Deutsch| Italiano | Ελληνικά | Nederlands | Polskie| Tiếng Việt| বাংলা| Indonesia| Pilipino| Türk| فارسی| ລາວ| ဗမာ| български| Català| čeština| Қазақ| Magyar| Română| Україна
Copyright ©2021 - 2031 All Rights Reserved.